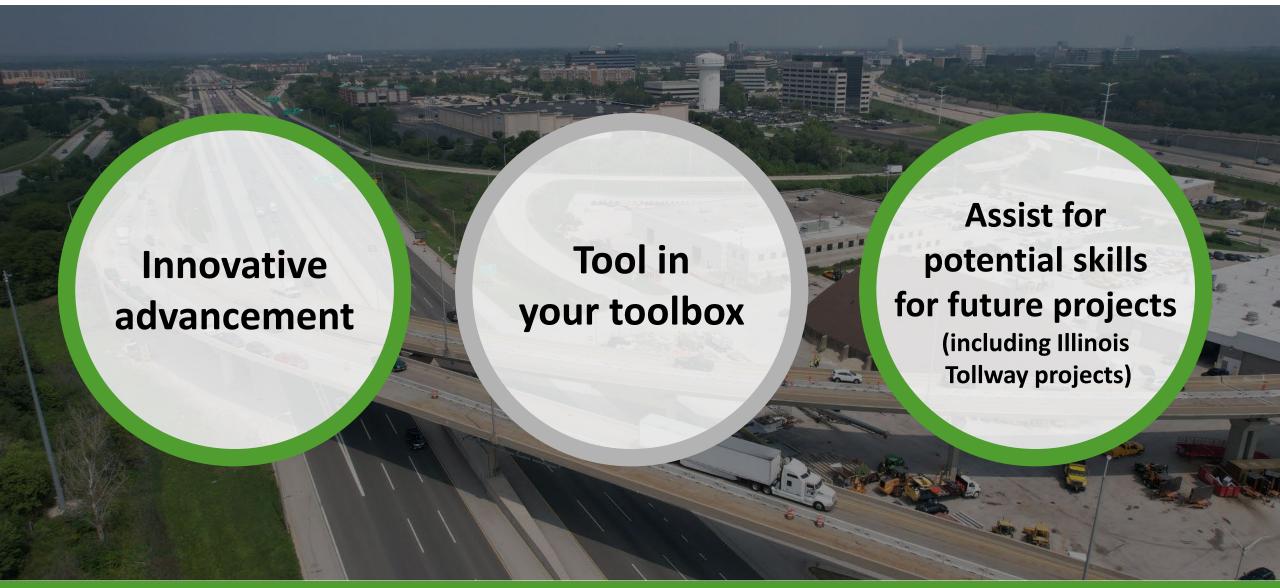
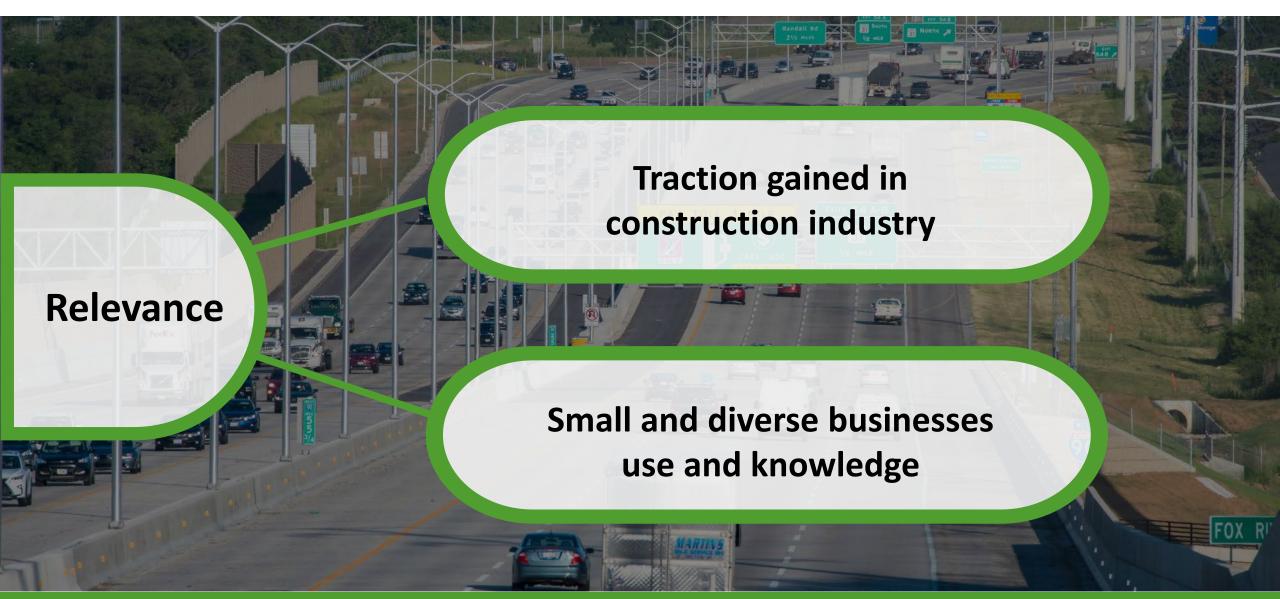


Introduction

Drone applications


Real-time applications and technologies

Preliminary aeronautical knowledge test


Open discussion, questions and answers and demonstration

INTRODUCTION: WHY DRONE TRAINING?

INTRODUCTION: BACKGROUND

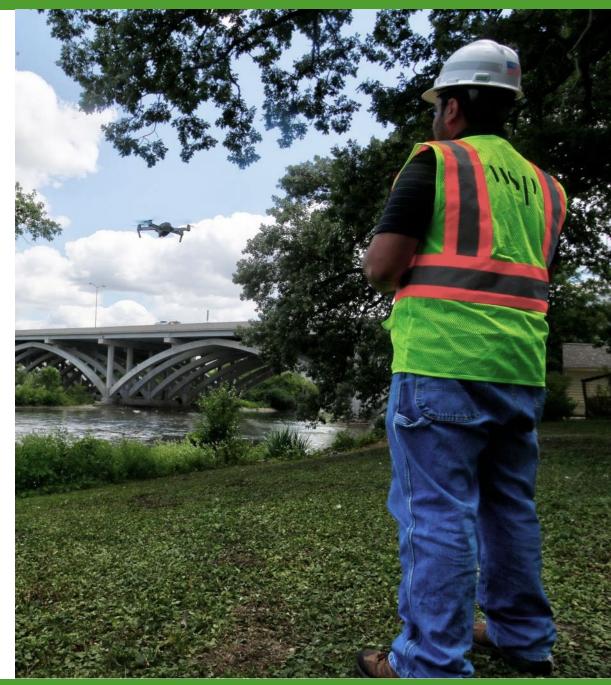
INTRODUCTION: WHY USE DRONES?

Enhance productivity, reduce manpower needs

Access difficult or hazardous terrain safely

Achieve superior data accuracy and resolution

Minimize or eliminate affect to traffic


Surveying

Purpose

- Better define work area
- Identify potential hazards
- Accurate work area representation

Benefits for contractors

- Surveying area they will work
- Drone vs. foot surveying
 - Time and cost savings
 - Safety

Project documentation

Project documentation

Benefits

- Captures aerial imaging of contract's progression
- Identifies status of schedule based on field observation
 - Assists in budget use coordination

Project documentation

Applicable drone use

- Design
 - Documentation/imaging provides insights for design submittals (i.e., geotechnical or structural wall reports benefited by documentation and imaging)
- Contractor
 - Example: Track progression of roadway patching and plaza canopy repairs/plaza reconstruction
 - Example: Track progress of projects (i.e., new facilities development from design plans through construction)

Communication

Communication

Applicable drone use

- Supports deliverance of project closeout
 - Capturing images and data of punch-list items needing to be completed
 - Example: Drone documenting pavement markings requirement from punch list
 - Capturing before and after images to show progress and completion of work

Collaboration

Collaboration

Applicable drone use

- Example: Better define scope and work for bridge rehabilitation project from drone imaging and video of pre-work site status
- Example: Drone supports ease of bridge inspection and level of work needed to rehabilitate

Inspections and safety management

Purpose

- Capture hard-to-reach shots while inspecting project sites
- Provide livestreamed inspection updates if specific staff cannot make inspection or to detail inspection for remote partners


Benefits for contractors

- Creates a safer environment for inspection personal
 - Reduces need to physically put oneself in potentially dangerous scenarios to capture inspection imaging/videos
- Can supplement inspections of certain entities, including canopies, facilities, etc.
 - Due to those inspections needing aerial imaging to inspect properly

Inspections and safety management

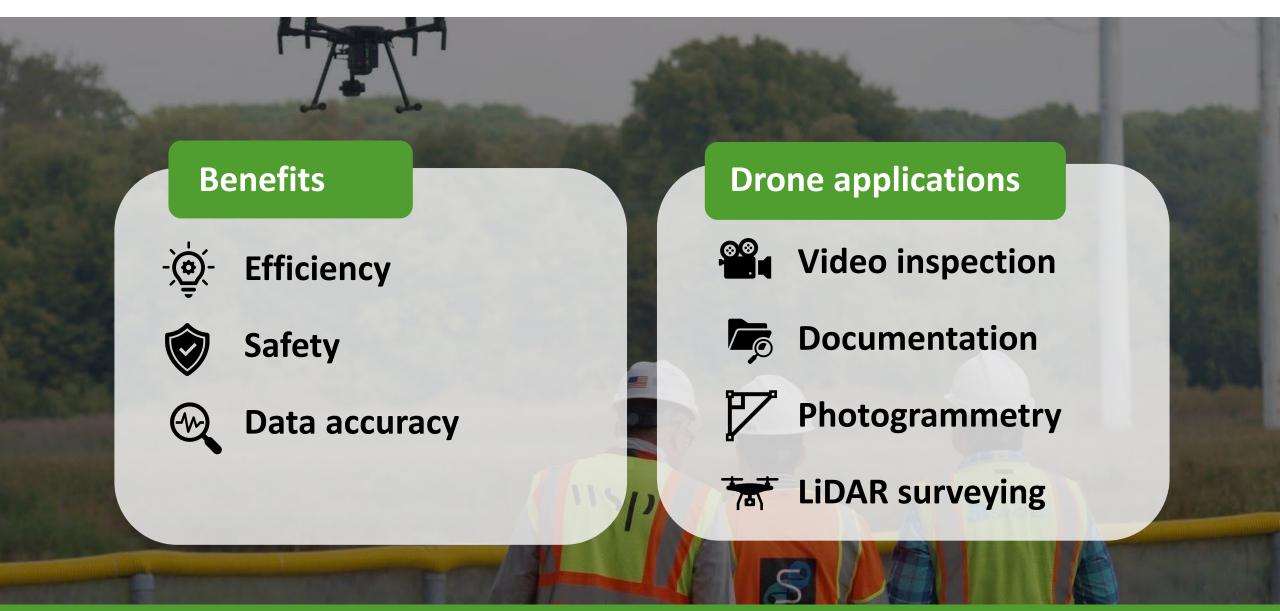
Applicable drone use

- Inspecting hard-to-reach and high-up field elements, including bridges, roof/top of buildings and communication towers
- Capturing shot of inspecting both sides of noisewall more efficiently without having to go back and forth on each side
- Taking prolonged shot of structural repair segment (i.e., retaining wall)

Inspections and safety management

Benefits for contractors Purpose Determine level of safety Understand what potential throughout entire worksite hazards may be in field that cannot normally be seen from Identify potential hazards at ground level worksite and better determine how to pre-plan around Allows contractors to go into unavoidable hazards work with better safety plan, pending potential hazards on worksite

Inspections and safety management


Applicable drone use

- Aerially scan worksite to identify potential hazards
 - Example: Overheating equipment on site if capturing thermal-imaging drone shots
- Identify damaging property on worksite
 - Example: Crack on top of noisewall
- Assessing structural stability of bridges, noisewalls, overhead signs, etc.

SURVEYING

VIDEO INSPECTION

DOCUMENTATION

PHOTOGRAMMETRY

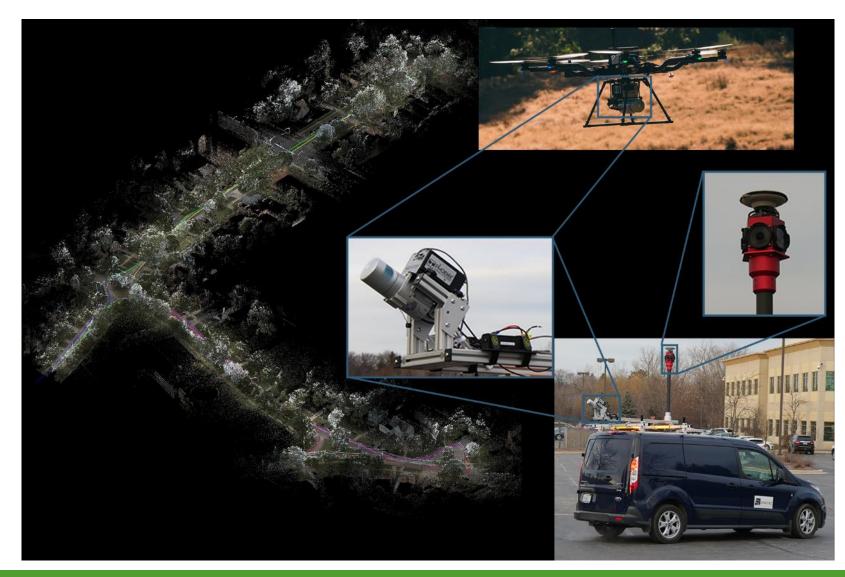
Products of photogrammetry

Orthomosaics

- Base maps
- Planimetrics
- Documentation

3D model

- Volume calculations
- 3D survey and terrain models
- Point clouds


LiDAR

Point clouds

- Surface models
- Topographic surveys
 - Feature extraction
 - Line work
 - Contours

Typical projects

- Railroads
- Highways
- Airports

DRONES FOR VIDEO INSPECTION

Ideal for inspecting tall structures or difficult terrain

Inspection done remotely

Mid-level training

Drones: DJI Mavic Series, DJI Matrices Series, Autel

Robotics EVO II Dual, Skydio

Equipment: High-resolution video cameras, gimbal for

stabilization or 360 cameras

Cost: \$2,000 - \$12,000

DRONES FOR PHOTOGRAMMETRY

Create detailed maps and 3D models from aerial photos

Higher detail than satellite imagery

- Google Earth
- Google Maps

Mid-level training

Drones: DJI Mavic, Phantom, or Matrice

Equipment: High-resolution camera, multispectral

cameras and preferably RTK

Cost: \$1,200 - \$17,000

DRONES FOR AERIAL LIDAR

Surveying

Advanced technology for mapping and surveying

Higher level of training and implementation

Drones: DJI Matrice 300 series or 600 Pro, FREEFLY

Alta X

Equipment: LiDAR Sensors, IMU, GNSS Receivers

Cost: \$40,000 - \$350,000+

DRONES FOR DOCUMENTATION AND MONITORING


Essential for precise project documentation and monitoring

Not much training needed

Drones: DJI Matrice, Phantom, Mavic, Mini, Air, Skydio, Parrot Anafi

Equipment: 4K video cameras, GPS for location

Cost: \$700 - \$17,000

BEST PRACTICES FOR DRONES

Adherence to legal and safety standards

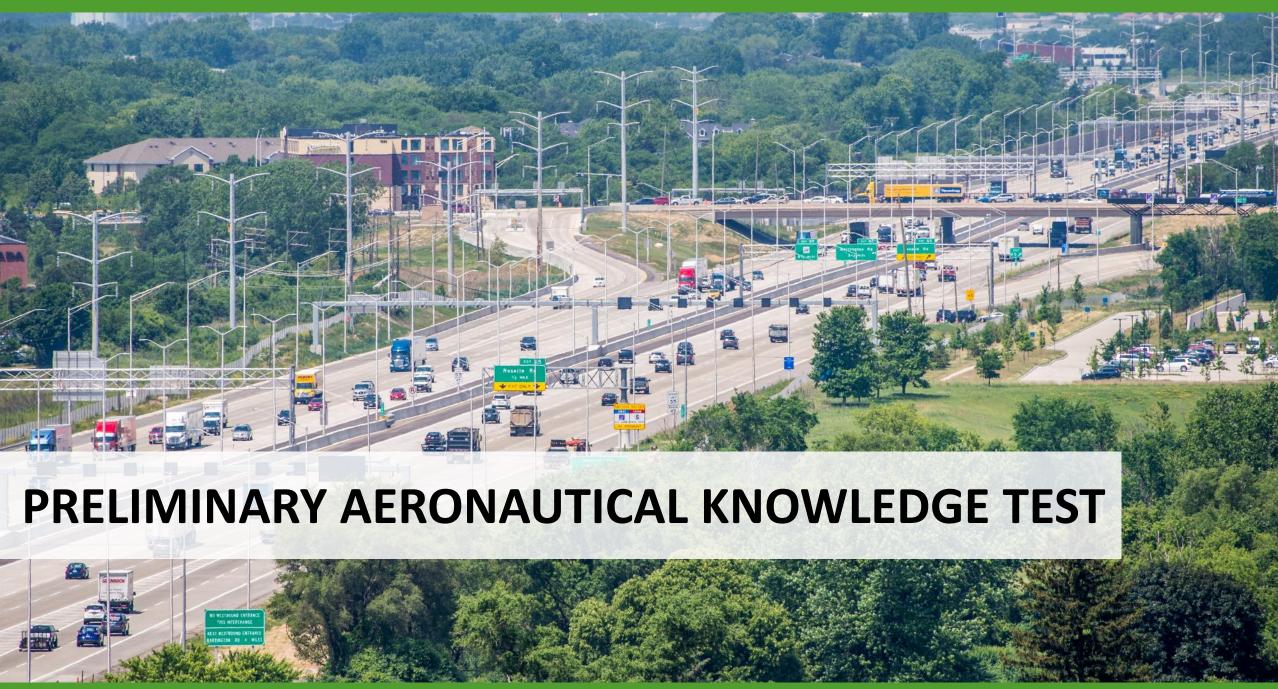
Adherence to Illinois Tollway procedures

Regular equipment checks and updates

Continuous learning for team skill improvement

Use of drone spotter, when required

FUTURE OF DRONE SURVEYING


Drones changing way we inspect, document and land survey

Future trends

- Al integration
- Improved autonomy
- Regulatory evolution

Drones revolutionizing

- Continue to revolutionize precision, efficiency and safety in many practices
 - Land surveying
 - Engineering
 - Construction
 - Real estate

How to get certified with Federal Aviation Administration

Take time to study

• Questions will be about airspace and FAA regulations, not on your ability to fly drone

Use online resources

- Remote Pilot Small Unmanned Aircraft Systems Study Guide
- Unmanned Aircraft General (UAG) Sample Questions
- YouTube

Expected subject matter

- Applicable regulations relating to small unmanned aircraft system rating privileges, limitations and flight operation
- Airspace classification and operating requirements and flight restrictions affecting small unmanned aircraft operation
- Emergency procedures
- Airport operations
- Operation at night

How to get certified with Federal Aviation Administration

Registering to take exam

You must obtain FAA tracking number before registering for exam

- iacra.faa.gov/IACRA/default.aspx
- Create your profile

Find test site

Schedule exam date

- Registration fee: \$175
- You will receive confirmation email on your test date and specifics

Receive full refund if cancellation within 24 hours before appointment (if needed)

Test Site	Distance	Address	
IT Expert System, Inc Naperville	7 Mies	1560 Wall Street, Suite 111 Naperville, JL 60563	M Directions
Illinois Aviation Museum at Bolingbrook	10 Miles	₹130 S. Clow International Parkway Bolingbrook , IL 60490	M Directions
Illinois Aviation Academy	(11 Miles)	₹32W751 Tower Rd West Chicago, JL 60185	fl Directions
Avel Flight School	(11 Miles)	\$3N040 Powis Rd West Chicago , IL 60185	N Directions
Lewis University	(13 Miles)	Pone University Prkwy Campus Box 282 Romeoville , IL 60446	M Directions
IT Expert System- Des Plains	(16 Miles)	₹2400 E. Devon Ave, Suite 257 Des Plaines , IL 60018	fld Directions
IT Expert System, Inc - Schaumberg	(17 Miles)	₱951 N Plum Grove Rd , Suite A Schaumburg , IL 60173	N Directions
Aviation Institute of Maintenance - Chicago	(19 Miles)	₹3711 South Ashland Ave Chicago , JL 60609	N Directions
PSI Examination Services-Chicago	21 Miles	¶332 S Michigan Ave Chicago , IL 60604	ill Directions
JA Flight Training	21 Mies	43W700 US Route 30 Sugar Grove , IL 60554	ful Directions
Blue Skies Pilot Shop dba Blue Skies Flying Services Inc	31 Miles	₹8411 Pyott Road Suite 106 Lake in the Hills , JL 60156	(ii) Directions
Griffith Aviation Inc.	36 Miles	1705 E. Main Street Griffith , IN 46319	All Directions
Merrillville Training and Testing Center	41 Mies	¶1443 E 84th Place Merrillville , IN 46410	M Directions
Skill Aviation Services LLC	42 Mies	₹2346 West Beach Road Waukegan . JL 60087	M Directions

How to get certified with Federal Aviation Administration

Exam

- You have two hours to answer 60 questions
 - Passing score is 70 percent

According to 14 CFR Part 107, how may a Remote Pilot in Command (Remote PIC) operate an unmanned aircraft in Class C airspace?

- A. The remote PIC must contact the ATC facility after launching the unmanned aircraft
- B. The remote PIC must monitor the ATC frequency from launch to recovery
- C. The remote PIC must have prior authorization from the Air Traffic Control (ATC) facility having jurisdiction over that airspace.

Unless otherwise authorized, what is the maximum airspeed at which a person may operate an sUAS below 400 feet?

- A. 80 mph
- B. 100 mph
- C. 200 knots

What action should the remote PIC take upon GPS signal loss?

- A. Perform the planned flyaway emergency procedure
- B. Follow normal sUAS operational procedure, noting any mode or control changes that normally occur if GPS is lost.
- C. Land the unmanned aircraft immediately prior to loss of control

How to get certified with Federal Aviation Administration

Post exam

- If you pass, complete FAA form 8710-13
 - Provides you confirmation of passing test and informs
 FAA to send you license
- A TSA background check will be conducted
 - Automatically conducted upon submitting application
- Remote pilot certificate will be mailed to you
 - Always keep on hand when flying
- If you were unable to pass, can take exam again after 14 days
 - You will be provided with topics you could improve on, not exactly which questions you got wrong

OPEN DISCUSSION, QUESTIONS AND ANSWERS

